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Executive Summary 

This document, "D5.8 Plastic Parts and Components Analysis and Origin for Reuse 

Optimisation," outlines a comprehensive framework developed by the DigInTraCE 

project for enhancing the efficiency of plastic recycling processes through the 

integration of advanced technologies and methodologies.  

It begins with an introduction that sets the stage by explaining the primary 

purpose of the deliverable and identifying the intended audience. The DigInTraCE 

project focuses on enhancing plastic recycling by utilizing digital value chain 

integration and traceability. The ultimate goal is to promote circularity and achieve 

low emissions by reducing waste and maximizing the use of secondary raw 

materials (SRMs). Chapter 2 delves into the SIGIT use case, providing a thorough 

examination of the reuse optimization process. This chapter highlights how the 

methodologies proposed by the project are applied in a real-world scenario. It 

discusses the valorization process in detail, taking into account relevant regulations 

and legal considerations. This ensures that the recycling processes are not only 

efficient but also compliant with existing laws and environmentally sustainable. 

Chapter 3 offers insights into the target markets and finished products associated 

with the recycling of plastic materials. It identifies the specific types of polymer 

compounds and SRMs targeted for recycling, describing their characteristics and 

potential applications. This chapter also addresses the limitations where SRMs 

cannot be used, explaining the reasons behind these constraints. By doing so, it 

provides a clear understanding of the market dynamics and potential 

opportunities for recycled materials. In Chapter 4, the document outlines the 

advanced sensing and sorting techniques employed in the recycling process. These 

techniques are crucial for enhancing the accuracy and efficiency of material 

sorting, which is a critical step in the recycling chain. The chapter details the 

architecture of the vision-based sorting system and other innovative technologies 

used to optimize the sorting process. Chapter 5 focuses on the Closed-Loop Supply 

Chain (CLSC) Tool and its functionalities. It explains how this tool supports the 

supply chain by integrating IoT technologies for real-time data collection. The 

chapter covers the methodologies for planning, scheduling, and executing 

production orders, ensuring that the recycling processes are streamlined and 

efficient. The CLSC Tool plays a pivotal role in coordinating various aspects of the 
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recycling process, from collection to final processing. Chapter 6 provides an in-

depth explanation of the AI algorithms developed for detecting and preventing 

anomalies in the recycling process. These machine learning algorithms are 

designed to enhance the reliability and efficiency of the recycling system by 

identifying potential issues early and implementing corrective actions. This chapter 

underscores the importance of AI in improving the overall performance and 

sustainability of recycling operations.  The final chapter, Chapter 7, aims to integrate 

all the elements and technologies discussed in the previous chapters. It brings 

together the various components of the project, highlighting how they work in 

concert to optimize the plastic recycling process. The chapter also discusses 

mitigation strategies to address challenges, such as the exit of a key partner, and 

the steps taken to find new collaborators and adjust the project’s focus and 

methodologies accordingly. 
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1. Introduction 

The DigInTraCE project focuses on improving plastic recycling by integrating 
digital value chain systems and enhancing traceability within process industries. 
The primary goal is to promote circularity and reduce emissions through effective 
waste management and the utilization of secondary raw materials (SRMs). 

1.1. Purpose of the deliverable  
This deliverable aims to enhance the efficiency of plastic recycling processes by 
focusing on three key areas: 

1. Detection of Pure Polymer Flakes: Identifying unfiltered flakes in pure 
polymers to increase recycling efficiency. The target is an 8-9% increase in 
the total mass of polymers recycled, covering polypropylene (PP), 
acrylonitrile butadiene styrene (ABS), high-impact polystyrene (HIPS), 
polyamide (PA), and polycarbonate-ABS (PC-ABS). 

2. Identification of Reusable Compound Flakes: Determining the main 
composition of flakes with reusable compounds to boost recycling by 5-7% 
of the total polymer weight. 

3. Preparation for Chemical Recycling: Analyzing flakes with pure polymers 
and high molecular weight substances to prepare inputs for advanced 
recycling processes like pyrolysis and metanalysis, aiming to reduce waste 
mass incineration and hazardous substances in ashes. 

Approach: 

• Initial Classification: it will be conducted a thorough classification of flakes 
post-waste grinding and primary separation to determine their chemical 
composition. This process addresses the non-homogeneous nature of input 
waste, primarily sourced from Waste Electrical and Electronic Equipment 
(WEEE). 

• Chemical Analysis: it will be identified unusable substances and pigments 
through chemical analysis to ensure only viable materials are processed 
further. 

• Machine Learning (ML) Techniques: it will be designed ML models to 
monitor and optimize process parameters, including physical, thermal, and 
rheological data. 

Roles and Contributions: 

➢ SIGIT: Leverage its expertise in injection molding to provide requirements, 
input data, and support for the validation phase. 

➢ UVQ: Develop data-driven techniques to optimize processes and recipes, 
and implement predictive analysis for injection molding control. Utilize ML 
and Control Theory methods (e.g., Regression Trees, Random Forests, 
Support Vector Machines, Neural Networks) to improve process efficiency 
and achieve key performance indicators (KPIs). 

➢ DGS: Integrate the CLSC tool developed in T3.4 to streamline the process. 
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Outcomes: 

• Development and demonstration of optimized recycling processes and 
techniques. 

• Reduction in wasted mass destined for incineration and a decrease in 
dangerous substances found in incineration ashes. 

• Enhanced predictive capabilities and process control through advanced ML 
and Control Theory techniques. 

Solutions will be demonstrated and validated in Work Package 6 (WP6) in the 
Italian Demo, ensuring practical applicability and effectiveness in real-world 
scenarios. 
 
This deliverable represents a significant step towards sustainable plastic recycling, 
leveraging advanced technologies and interdisciplinary expertise to achieve 
measurable improvements in recycling efficiency and environmental impact. 
 

1.2. Intended audience 
The intended audience for this document is i) stakeholders involved in the 
DigInTraCE project, including researchers, engineers, and project partners focusing 
on the optimization of plastic parts and components reuse, as well as ii) entities 
interested in advanced recycling processes and circular economy practices. This is 
inferred from the technical nature of the content, the involvement of specific 
industrial and technological processes, and the emphasis on collaborative and 
interdisciplinary efforts within the project's scope. 
 

1.3. Structure of the deliverable and its relation with 
other work packages/deliverables  
The deliverable is structured into different chapters, listed in the table of contents 
and summarized in the Executive Summary. They serve the reader in deep-diving 
into the reusable process of plastic parts coming from WEEE, providing insights in 
enhanced predictive capabilities and process control through advanced AI 
Algorithms, sensing and sorting techniques. 
 
The delivery of this document will provide data to WP6, where the solution will be 
demonstrated and quantified. Furthermore, it is related to WP3, where a detailed 
explanation of the novel sensing and sorting techniques is provided, along with an 
in-depth description of the Closed Loop Supply Chain Tool. 

1.4. Main changes from previous version 
This is the first version. 
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2. SIGIT - Use Case and The Reuse 
Optimization Process 

SIGIT S.p.A. is a leading manufacturer specializing in the production of high-
precision plastic and rubber components for various industrial applications, 
particularly in the automotive sector. With its headquarters in Italy, SIGIT operates 
multiple advanced manufacturing facilities equipped with cutting-edge 
technologies. 
 
SIGIT's core competencies include: 

1. Injection Molding: Utilizing state-of-the-art injection molding machines, 
SIGIT produces complex plastic components with high precision and 
consistency. The company’s expertise in mold design and process 
optimization ensures superior product quality and efficiency. 

2. Rubber Molding: SIGIT specializes in the production of molded rubber parts, 
employing both compression and injection molding techniques. These 
components are engineered to meet specific performance requirements, 
including durability, elasticity, and resistance to various environmental 
factors. 

3. Assembly: Beyond molding and extrusion, SIGIT offers comprehensive 
assembly services, integrating molded components with other materials 
and parts to deliver complete, ready-to-use products. 

4. Tooling and Mold Making: SIGIT’s in-house tooling department designs and 
manufactures high-precision molds and dies, enabling rapid prototyping 
and production scalability. This capability allows for tight control over the 
quality and timelines of new product developments. 

5. Quality Control: Employing rigorous quality control processes, SIGIT ensures 
that all products meet stringent industry standards. Advanced inspection 
and testing equipment, including CMM machines and various non-
destructive testing methods, are used to verify the dimensions and 
properties of finished components. 

6. Research and Development: SIGIT is committed to continuous 
improvement and innovation. The R&D team focuses on material science, 
process engineering, and product design to develop new solutions and 
enhance existing products. Collaboration with academic institutions and 
industry partners supports this ongoing effort. 

7. Sustainability: The company implements environmentally friendly practices 
across its operations, from material selection to waste management, 
aligning with global sustainability standards. 

 
SIGIT S.p.A. is recognized for its technical excellence and ability to deliver high-
quality, reliable components tailored to the specific needs of its clients. Its 
advanced manufacturing capabilities and commitment to innovation position 
SIGIT as a key player in the global industrial landscape. 
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2.1. Reuse Optimization Process 
In recent years, the proliferation of electronic devices has led to a surge in electronic 
waste (e-waste), posing significant environmental challenges globally. Among the 
various components of e-waste, plastic materials present a particularly complex 
recycling scenario due to their diverse compositions and the presence of 
contaminants. To address this issue, innovative approaches to plastic recycling are 
essential, focusing on the recovery and reuse of mixed polymeric materials 
obtained from Waste of Electric and Electronics Equipment (WEEE). 
 
The Italian Demo case represents a comprehensive effort to tackle the complexities 
of plastic recycling within the context of e-waste management. The process begins 
with the collection and sorting of WEEE, encompassing a wide range of electronic 
and electrical devices, from refrigerators and air conditioners to washing machines 
and photovoltaic panels. These devices contain a plethora of plastic components, 
each with its own unique properties and composition. 
Once collected, the WEEE undergoes a multi-stage recycling process aimed at 
recovering valuable materials and minimizing environmental impact. The initial 
stages involve mechanical sorting, where devices are dismantled, and components 
are separated based on material type. Metals, organic substances, electronic 
boards, and plastic and rubber parts are segregated into distinct streams, each 
destined for further processing. 
 
One significant challenge within the recycling process arises from the handling of 
what is termed "heavy plastics." This intermediate fraction consists of flakes with an 
average density of 1.1 Kg/dm³, rendering them unsuitable for traditional mechanical 
separation methods. The presence of impurities, such as flame retardants (e.g., 
brominated compounds), further complicates the recycling process. However, 
despite these challenges, the heavy plastics fraction contains valuable polymers 
and compounds that warrant recovery and reuse. 
 
To address the complexities of heavy plastics recycling, the Italian Demo case 
leverages innovative technologies and methodologies. Advanced sorting 
techniques, including spectroscopic analysis and molecular identification, enable 
the precise characterization of plastic flakes, facilitating targeted recovery efforts. 
Additionally, chemical analysis is employed to identify and mitigate the presence 
of contaminants, ensuring the quality and purity of recycled materials. 
The industrial recycling plant involved in the Demo case operates at a significant 
scale, processing up to 30,000 tons per year of input. This substantial throughput 
underscores the importance of efficient and effective recycling methods to 
manage the growing volumes of e-waste generated globally. The heavy plastics 
fraction, comprising 18 to 20 percent of the total input, represents a substantial 
portion of the material processed, highlighting its significance within the recycling 
operation. 
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Ultimately, the Italian Demo case exemplifies the transition toward a circular 
economy, where resources are used, reused, and recycled in a closed-loop system. 
By maximizing the recovery and reuse of plastic materials from WEEE, the project 
contributes to the reduction of waste, conserves natural resources, and mitigates 
environmental pollution. Moreover, by integrating innovative technologies and 
collaborative approaches, the project sets a precedent for sustainable practices in 
plastic recycling that can be replicated and scaled globally. 
 

2.2. General Description of The Proposed Valorization 
Process  
The treatment of Waste Electrical and Electronic Equipment (WEEE) is a critical 
component of modern waste management, driven by stringent regulations and 
the need for sustainable practices. In Italy, the process is managed by companies 
authorized to recover and recycle waste, adhering to a complex legal framework 
that governs the entire value chain from waste collection to the availability of 
secondary materials.  
This section aims to provide an in-depth look at the pure recycling macro phases 
of WEEE treatment, depicted in Figure 1, highlighting the key steps and 
methodologies involved. 

 

Figure 1: Macro schema of the WEEE valorization process 

 
The seven macro phases are: 

1. Initial Shredding and Separation 

The recycling process begins with the shredding of collected WEEE. This step is 
crucial as it breaks down large electronic devices into smaller, more manageable 
pieces. Following shredding, the materials pass through a series of mechanical and 
magnetic screens designed to remove foreign materials. Iron, powders, magnetic 
substances, glass, and paper are separated during this phase. This multi-step 
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process ensures that only the desired thermoplastic mix progresses to the next 
stage, while contaminants are systematically removed. 

2. Flotation for Metal Removal 

After the initial separation, the plastic fragments undergo a flotation process. 
Flotation is an effective method for removing metals and other residual materials. 
During this phase, the materials are immersed in water, where differences in 
density cause metals and other impurities to sink or float, facilitating their removal. 
While flotation significantly reduces the presence of unwanted materials, it is not 
entirely foolproof, and some contaminants may remain. 

3. Advanced Cleaning and Removal of Non-Plastics 

The subsequent cleaning phase involves the removal of non-plastic fragments 
such as wood, sponge, and rubber. This is achieved through a combination of dry 
and wet flotation techniques, which further purify the plastic waste. Plastics 
containing flame retardants or those with a density greater than 1.1 Kg/dm³ are also 
identified and separated during this stage. These steps are vital to ensure that the 
remaining plastic material is as homogeneous and contaminant-free as possible. 

4. Homogenization and Grinding 

To enhance the uniformity and facilitate further separation, the plastic materials 
are ground into smaller particles, typically around 10-12 mm in size. Grinding the 
plastic into finer particles makes it easier to handle and increases the efficiency of 
subsequent separation processes. This homogenization is a critical step in ensuring 
that plastic waste can be effectively sorted and recycled. 

5. Density-Based Separation 

The next phase of the process involves separation by density. Different types of 
plastics have varying densities, which can be exploited to segregate them. 
Polypropylene (PP) and polyethylene (PE) are lighter and tend to float, whereas 
high-impact polystyrene (HIPS) and acrylonitrile butadiene styrene (ABS) are 
denser and sink. This density-based separation is instrumental in isolating specific 
types of plastics, which can then be processed further. 

6. Dry Line Separation 

In the dry line separation phase, polystyrene and ABS are separated from rubber 
residues, wood, and other small impurities. Electrostatic separators play a crucial 
role here, leveraging the differences in electrical properties to distinguish between 
materials. Once separated, the ABS and HIPS undergo further refinement in a 
flotation tank, where HIPS with additives is divided from HIPS without additives. 
This meticulous separation process ensures that each type of plastic is purified to 
the highest possible degree. 

7. Color Selection 

As a final step in the sorting process, color selection may be performed, particularly 
for "white HIPS" derived from Class W1 recycling (e.g., refrigerators and freezers). 
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This step is essential for applications where color uniformity is critical, enhancing 
the aesthetic and functional quality of recycled plastic. 
Despite the comprehensive nature of these separation processes, not all fractions 
can be perfectly sorted. Some materials fall outside the density range of the 
treatment plant's capabilities, or they may not be adequately separated due to the 
high throughput requirements, which prevent fine separation of every single flake. 
Consequently, these fractions, which still contain valuable polymers, are often 
designated for waste-to-energy processes, where they are incinerated to generate 
energy. 

The project DigInTraCE aims to address these challenges by optimizing the 
detection and sorting phase of the recycling process. By enhancing the ability to 
identify and separate usable polymers from mixed fractions, the project seeks to 
increase the overall efficiency and effectiveness of plastic recycling. The input 
materials for DigInTraCE are derived from the fractions that current processes 
struggle to separate efficiently. These materials, which would otherwise be 
incinerated, provide a valuable resource for developing improved recycling 
technologies. 

 

2.3. Regulatory and Environmental Considerations 
The stringent Italian regulatory environment plays a crucial role in shaping the 
recycling process. Regulations ensure that companies adhere to high standards of 
environmental protection and resource recovery, but they also add layers of 
complexity to the recycling chain. From the initial collection of WEEE to the final 
availability of secondary materials, every step is governed by detailed legal 
requirements designed to minimize environmental impact and promote 
sustainability. 
Looking ahead, the future of WEEE recycling lies in continuous innovation and 
improvement of existing processes. Projects like DigInTraCE represent a significant 
step forward in this regard, leveraging advanced technologies such as machine 
learning and data-driven optimization to enhance sorting and detection 
capabilities. By refining these processes, it is possible to increase the recovery rates 
of valuable polymers, reduce the volume of waste destined for incineration, and 
minimize the environmental footprint of electronic waste. 

 

3. Target Markets and Finished Products 

The primary goal of the recycling process outlined is the production of Secondary 
Raw Materials (SRMs) from high percentages of materials recovered from Waste 
Electrical and Electronic Equipment (WEEE). SRMs are essentially formulated from 
pure polymers and polymeric compounds, aiming to create new injection-molded 
plastic components. The study focuses on improving the types of polymeric 
compounds processed and enhancing the overall efficiency of the recycling 
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process. This involves a detailed examination of field and reprocessing 
technologies, market targets, and compliance with complex regulations and 
technical specifications. 

3.1. Polymer Compounds and SRMs 
The recycling process transforms recovered materials into polymer compounds, 
which are then used to produce SRMs. These SRMs are crucial for creating new 
plastic components via injection molding. However, it is important to note that 
pure polymers are rarely used in their unblended form due to the stringent 
requirements set by customers. Instead, polymers are often compounded with 
various additives to meet specific performance and compliance standards. 
 
Pure polymers obtained from the recycling process are typically sold to external 
compounding companies that specialize in creating tailored blends. These 
companies are equipped with the expertise and technology to modify the 
properties of the polymers to suit different applications. However, this aspect is not 
within the scope of the Italian Demo Case of DigInTraCE, which focuses primarily 
on developing SRMs for direct use in new product manufacturing. 
 

3.1.1. Injection Molding 
Injection molding is a widely used manufacturing process for producing plastic 
components. It involves injecting molten polymer into a mold cavity, where it cools 
and solidifies into the desired shape. The use of SRMs in injection molding requires 
a deep understanding of the material properties and the specific requirements of 
the end products. Formulating SRMs that can perform reliably under various 
conditions and meet customer specifications is a significant challenge. 
 
The efficiency of the injection molding process can be significantly impacted by the 
quality of the SRMs. Impurities or inconsistencies in the material can lead to defects 
in the final products, increasing waste and production costs. Therefore, continuous 
improvements in the recycling process, including better sorting, cleaning, and 
compounding techniques, are essential to produce high-quality SRMs. 

3.2. Target Markets 
The SRMs produced from recycled WEEE materials have diverse applications 
across several industries. Key target markets include: 

➢ Small and Large Domestic Appliance Equipment 

The domestic appliance market is one of the largest consumers of plastic 
components. SRMs can be used to manufacture various parts for appliances such 
as refrigerators, washing machines, dishwashers, and air conditioners. These 
applications require materials that can withstand mechanical stress, temperature 
variations, and chemical exposure. 

➢ Transportation 
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The transportation sector, including automotive, light and heavy commercial 
vehicles, agriculture, and construction tractors, is another significant market for 
SRMs. Plastics in this sector are used for a wide range of applications, from interior 
components to under-the-hood parts. Materials used in transportation must meet 
stringent safety, durability, and performance standards, making the development 
of suitable SRMs a complex task. 

➢ General Purposes 

Beyond specific industries, SRMs have general-purpose applications in various 
consumer goods, electronics, and packaging. The versatility of SRMs allows them 
to be used in multiple products, provided they meet the required specifications for 
each application. 
 

3.2.1. Regulatory and Technical Challenges 
The recycling and use of SRMs in new products are governed by a complex web of 
regulations and technical specifications. These requirements vary significantly 
depending on the target market and the specific application of the materials. 

 

3.2.1.1. Compliance and Homologation 
Compliance with customer-specific requirements (CSR) is a critical aspect of using 
SRMs. Each customer or industry has unique standards and regulations that 
materials must meet to be approved for use. For example, in the automotive 
industry, a new material must be homologated by the product supplier and meet 
30-40 different norms before it can be used in a vehicle. 
 
This homologation process is expensive and time-consuming, requiring extensive 
testing and validation to ensure that the material performs as expected under all 
conditions. For Sigit, the ability to create ad hoc formulations that meet these 
stringent requirements is essential. This requires a high level of expertise in both 
materials science and regulatory compliance. 
 

3.2.1.2. Material Properties and Specifications 
The technical specifications of each new compound used to produce SRMs are 
detailed and demanding. These specifications cover a wide range of properties, 
including mechanical strength, thermal stability, chemical resistance, and 
environmental impact. Meeting these specifications requires precise control over 
the recycling and compounding processes. 
 
For instance, the presence of flame retardants, plasticizers, or other additives in the 
recycled material can significantly affect its properties. Therefore, accurate 
detection and removal of impurities during the recycling process are crucial. 
Advanced technologies, such as machine learning and data-driven optimization, 
can help monitor and control these parameters to ensure consistent quality. 
 

3.2.2. Continuous improvement 
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Continuous improvement in the recycling process is vital to enhance the efficiency 
and quality of SRMs. The following areas are critical for achieving these 
improvements: 
 
Advanced detection and sorting technologies are essential for improving the 
purity of recycled materials. Techniques such as near-infrared spectroscopy, X-ray 
fluorescence, and electrostatic separation can help identify and remove 
contaminants more effectively. Machine learning algorithms can also be used to 
optimize these processes, reducing errors and increasing throughput. 
 
Effective cleaning and purification steps are necessary to remove non-plastic 
materials and additives from the recycled polymers. This includes both dry and wet 
flotation techniques, which can separate different types of plastics based on their 
density and other physical properties. Improved cleaning processes can lead to 
higher-quality SRMs, which are more suitable for demanding applications. 
 
The compounding process involves blending recycled polymers with additives to 
achieve the desired properties. This step is critical for tailoring the SRMs to specific 
applications and ensuring they meet all regulatory and performance requirements. 
Advanced compounding techniques, including the use of twin-screw extruders 
and reactive extrusion, can enhance the properties of the recycled materials and 
create high-performance blends. 
 
Furthermore, implementing robust process monitoring and control systems is 
essential for maintaining the quality and consistency of SRMs. This includes real-
time monitoring of key parameters, such as temperature, pressure, and material 
flow, as well as advanced data analytics to predict and correct any deviations. 
Machine learning and artificial intelligence can play a significant role in optimizing 
these processes, leading to more efficient and reliable recycling operations. 
 

3.2.2.1. Advanced Recycling Technologies 
Emerging recycling technologies, such as chemical recycling and pyrolysis, offer 
new ways to recover valuable materials from complex waste streams. These 
technologies can break down plastics into their basic chemical building blocks, 
which can then be reprocessed into high-quality polymers. While still in the early 
stages of development, these advanced recycling methods hold great promise for 
improving the efficiency and sustainability of the recycling process. 
 

3.2.2.2. Collaboration and Partnerships 
Collaboration between different stakeholders, including waste management 
companies, recyclers, manufacturers, and regulators, is essential for advancing the 
recycling process. By working together, these stakeholders can share knowledge, 
develop new technologies, and create more effective recycling systems. 
Partnerships with research institutions and technology providers can also help 
drive innovation and improve the overall efficiency of the recycling process. 

3.2.2.3. Consumer Awareness and Engagement 
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Increasing consumer awareness and engagement is crucial for the success of 
recycling programs. Educating consumers about the importance of recycling and 
how to properly dispose of electronic waste can help increase the volume and 
quality of materials available for recycling. Additionally, encouraging consumers to 
purchase products made from recycled materials can create a stronger market for 
SRMs, driving further investment and innovation in the recycling industry. 

3.3. Which markets cannot be reached and why?  
The use of Secondary Raw Materials (SRMs) sourced from the recovery of Waste 
Electrical and Electronic Equipment (WEEE) offers significant environmental 
benefits and contributes to the circular economy. However, SRMs derived from 
WEEE have certain technical limitations that restrict their applicability in some 
fields. These limitations are primarily due to the heterogeneous nature of the 
feedstock and the presence of contaminants that are difficult to eliminate entirely. 
This text will explore the specific challenges associated with using SRMs from 
WEEE in packaging, medical applications, aesthetically sensitive products, 
transparent materials, and food contact items. 
 

3.3.1. Packaging 
One of the primary challenges of using SRMs from WEEE in packaging applications 
is the diverse composition of the recovered polymers. Packaging often requires 
specific types of polymers that possess particular properties such as flexibility, 
strength, and barrier resistance. However, SRMs from WEEE are typically a mix of 
various polymers, including polyethylene (PE), polypropylene (PP), polystyrene (PS), 
and acrylonitrile butadiene styrene (ABS). This mixed composition makes it difficult 
to achieve the uniform properties required for packaging materials. Additionally, 
transparency is a critical requirement for many packaging applications, especially 
for products where consumers need to see the contents, such as food and 
beverage packaging. Achieving transparency with SRMs from WEEE is challenging 
due to the presence of various pigments and additives in the original electronic 
products. These contaminants can create opacity or discoloration, making it 
difficult to produce clear films and foams from the recycled materials. Moreover, 
the production of films and foams from SRMs is particularly challenging due to the 
presence of contaminants and the mixed nature of the feedstock. Films and foams 
require precise control over polymer properties such as melt flow index and 
molecular weight distribution. The heterogeneity of SRMs makes it difficult to 
achieve the consistency needed for these applications, leading to defects and 
variations in the final products. 
 

3.3.2. Medical Applications 
The medical industry has stringent requirements regarding the purity and safety 
of materials used in medical devices and packaging. Any contaminants present in 
the materials can pose significant health risks to patients. As a result, SRMs from 
WEEE are generally unsuitable for medical applications due to the difficulty of 
ensuring complete removal of contaminants. The diverse nature of the feedstock 
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means that even trace amounts of unwanted substances could be present, which 
disqualifies these materials from use in medical products. 
 
Medical applications are subject to rigorous regulatory standards that demand 
absolute purity and biocompatibility. Achieving these standards with SRMs is 
nearly impossible due to the potential for contamination from the original 
electronic waste. Consequently, the use of SRMs in the medical field is highly 
restricted, and alternative sources of pure, virgin polymers are typically required. 
 

3.3.3. Aesthetically Sensitive Products 
Aesthetically sensitive products, such as consumer electronics, automotive 
interiors, and high-end appliances, often require materials with specific colors and 
finishes. The presence of pigments and masterbatches in SRMs from WEEE can 
create inconsistencies in color and appearance. These pigments, originally added 
to the electronic products for specific purposes, remain in the recycled materials 
and can lead to undesirable aesthetic outcomes. Maintaining uniformity in color 
and finish is crucial for aesthetically sensitive products. The variability in the 
composition of SRMs can result in color inconsistencies and surface defects, 
making these materials less suitable for applications where appearance is a critical 
factor. High-quality control measures are necessary to ensure that recycled 
materials meet the stringent aesthetic requirements, which can be challenging 
and cost-prohibitive with SRMs from WEEE. 
 

3.3.4. Transparent Materials 
The use of SRMs from WEEE for producing transparent materials faces significant 
hurdles due to the presence of embedded pigments. These pigments, which were 
part of the original electronic products, cannot be completely removed during the 
recycling process. As a result, achieving the clarity and transparency required for 
certain applications, such as optical components or clear packaging, is difficult. 
Transparent materials often require high optical quality and performance, with 
minimal haze and excellent light transmission.  
The presence of even small amounts of pigments or other impurities can 
significantly degrade these properties. Therefore, SRMs from WEEE are generally 
unsuitable for applications where optical clarity is essential, and virgin polymers or 
more thoroughly processed recycled materials are preferred. 
 

3.3.5.Food Contact Applications 
Food contact applications, including packaging and utensils, have strict 
regulations regarding the presence of contaminants. These regulations are 
designed to ensure the safety and hygiene of food products. SRMs from WEEE are 
challenging to use in food contact applications due to the difficulty of completely 
removing contaminants that might pose health risks. The mixed nature of the 
feedstock and the presence of substances from the original electronic products 
create significant barriers to compliance with food safety standards. 
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Furthermore, legal and normative constraints in many regions prohibit the use of 
recycled materials with unknown or potentially hazardous contaminants in food 
contact applications. Ensuring that SRMs meet these stringent requirements 
involves extensive testing and certification processes, which can be impractical 
given the variability and potential contamination of WEEE-derived materials. As a 
result, SRMs from WEEE are typically not used for food contact items, and 
alternative sources of pure, compliant materials are sought. 
 
The recycling process for producing Secondary Raw Materials (SRMs) from WEEE 
is a complex but essential component of sustainable waste management. By 
focusing on advanced detection, sorting, cleaning, and compounding techniques, 
the recycling industry can produce high-quality SRMs that meet stringent 
regulatory and performance requirements. Targeting key markets, such as 
domestic appliances and transportation, ensures that these materials are used 
effectively and contribute to a circular economy. 
Continuous improvement and innovation in recycling technologies, coupled with 
strong collaboration and consumer engagement, are vital for the future success of 
SRMs. As the industry evolves, the ability to produce high-quality recycled materials 
will play a crucial role in reducing environmental impact and creating more 
sustainable products. The DigInTraCE project represents a significant step forward 
in this effort, leveraging advanced technologies and collaborative efforts to 
enhance the recycling process and the quality of SRMs produced. 
 

 

 

4. Sensing and sorting 

A sorting system for the valorisation of the plastics secondary stream will be built 
within the DigInTraCE project, namely in T3.2 and will be detailed described in 
Deliverable 3.3. This development aims to separate various plastic granules 
according to their composition. However, because of the shift in pilot owners 
(already described in D3.7, Chapter 5 'SIGIT - Use case and challenges faced'), the 
plastic sorter's advancement has been postponed until the new pilot owners 
formally join the consortium.  
Though the new pilot requirements and specifications are mostly unchanged from 
the old one, the plastic sorter partners were able to move forward with some 
rudimentary developments to meet the T3.2 time schedule as close to the deadline 
as possible. 
More specifically, IRIS is in charge of the material characterisation of the plastic 
sample, and deliverable 3.1 includes a thorough description of the work in progress. 
The primary goal of the analysis is to identify the specific components present in 
each plastic flake. This detailed characterization involves advanced techniques 
which help to determine the polymer type, presence of additives, and possible 
contaminants. 
By precisely identifying the composition of each flake, IRIS aims to: 
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1. Enhance the understanding of the material properties. 

2. Identify potential challenges in the recycling process. 

3. Provide data to improve sorting and processing techniques. 

Following the detailed material analysis, a machine learning (ML) algorithm 
designed to optimize the recycling process has to be applied. At this stage, the 
algorithm aims to Improve the accuracy of sorting techniques by predicting the 
polymer type and quality based on the physical and chemical properties of the 
flakes. 
The ML model has to be trained using the data obtained from the initial analysis 
and continuously refined through iterative learning. This approach ensures that the 
model could adapt to new data and improve its predictions over time. 
To further support the development and validation of the ML algorithm, SIGIT, has 
to provide technical datasheets for several of its finished products. These 
datasheets should include detailed information about the nominal bill of materials 
(BOM) used in the production of these products, specifying the virgin plastics 
involved. 
The inclusion of this information allows for: 

1. A direct comparison between the recycled materials analyzed and the 
virgin materials specified in the BOM. 

2. Identification of any discrepancies between the properties of recycled and 
virgin plastics, enabling targeted improvements in the recycling process 

3. Validation of the ML algorithm's predictions by comparing the 
characteristics of recycled plastic against the specifications of the virgin 
material used in finished products. 

 
Regarding the sorting design leaded by ICCS, it will have three primary levels. To 
begin with, a pretreatment unit will be employed ensuring a uniform and even 
distribution of samples down the conveyor belt. Subsequently, the sorting system 
will incorporate the output of the T3.1 sensing system supplied by IRIS, feeding the 
convolutional networks of ICCS to achieve high levels of accuracy in material 
classification and image processing. In the end, an air nozzle system will be 
developed, aiming the final separation stage, which will be carried out by using the 
output of the ML/DL models. 

4.1. High-Level Overview of the vision-based 
architecture of Sorting system 
ICCS has developed a vision-based architecture specifically designed for the 
automated sorting of plastic waste. This system utilizes cutting-edge artificial 
intelligence (AI) and multi-sensor technologies to efficiently identify, classify, and 
sort various types of plastic materials on a conveyor belt, significantly enhancing 
the recycling process's accuracy and efficiency. 
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To gain a comprehensive insight into the functionalities and key components of 
the vision-based architecture developed by ICCS for automated plastic waste 
sorting, the following Table 1 outlines the core modules and their roles in the sorting 
process: 
 

Table 1: Core Components and Workflow 

Component Description 
Multi-Sensor 
Integration 

The system integrates RGB (Red, Green, Blue) and multi-
spectral cameras (HSI) to capture comprehensive imagery 
across different wavelengths. This multi-sensor setup 
provides detailed visual data that is essential for 
distinguishing between various plastics based on their 
unique spectral characteristics. 

Detection and 
Segmentation 

The sorting process begins with the detection module, 
which is AI-powered and responsible for recognizing and 
segmenting plastic objects on the conveyor belt. This 
module uses deep neural networks to analyze frames from 
the RGB camera in real-time, generating binary masks that 
outline each plastic object’s shape and position. Each 
object is assigned a unique digital ID to track it accurately 
through the sorting stages. 

Synchronization 
and Coordination 

The synchronization module ensures seamless operation 
by coordinating the timing and actions of all system 
components. It synchronizes the cameras to capture 
optimal images of the plastic objects as they move along 
the conveyor and triggers the robotic arm at the correct 
moment for picking and sorting. The module considers 
factors like conveyor speed, camera positions, and the 
robotic arm’s location to maintain precise control. 

Multi-Modal 
Classification 

The classification module processes data from various 
sensors to determine the type of plastic material. It uses an 
auto-encoder-based AI framework with parallel encoders 
to handle inputs from different imaging modalities, 
including RGB, visible light, and near-infrared (NIR). By 
combining these inputs, the system accurately classifies 
the plastic type, such as PET, HDPE, and LDPE. 

Robotic Sorting After classification, detailed information about the plastic 
type and its position is relayed to the robotic subsystem. 
The robotic arms are guided to pick and sort the plastics 
accordingly, ensuring each material is directed to the 
appropriate recycling stream. This automated process 
enhances the purity and quality of the sorted plastic, 
preparing it for further recycling processes. 

 

The key innovations and advantages of the ICCS Vision-Based Agnostic System for 
plastic waste sorting are described in the following table:  

 
Table 2: Key Innovations and Advantages of the ICCS Vision-Based Agnostic System 
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Feature Description 
Agnostic 
Sorting 
Capability 

One of the system’s standout features is its agnostic sorting 
capability. It is designed to handle various plastic types without 
the need for specific reconfigurations, making it versatile and 
suitable for a wide range of recycling applications. 

Enhanced 
Accuracy and 
Efficiency 

Leveraging advanced AI for precise detection and 
classification, the system significantly reduces the risk of 
misclassification and contamination. Multi-spectral imaging 
aids in distinguishing between plastics that may appear similar 
under standard lighting conditions. 

Real-Time 
Processing 

The system operates in real-time, which is crucial for 
maintaining high throughput and efficiency in industrial 
plastic recycling operations. It keeps pace with the continuous 
flow of materials on the conveyor belt, ensuring timely and 
efficient sorting. 

Reduction of 
Manual Labor 

By automating the sorting process, the system reduces 
dependence on manual sorting. This automation minimizes 
human error and increases overall safety and productivity in 
recycling facilities. 

 
The ICCS vision-based system represents a significant technological advancement 
in the field of automated plastic waste sorting. By integrating sophisticated multi-
sensor technology with state-of-the-art AI, this system supports the effective and 
sustainable management of plastic waste streams. It contributes to the broader 
goals of a circular economy and helps reduce the environmental impact of plastic 
waste. 
 
Both the sensing and sorting techniques will provide insights and data into the 
DPP, making the whole process traceable and supporting the CLSC Tool to identify 
and schedule the use of the reusable material into the production system. 
 
 

5. CLSC Tool – planning, scheduling and MES  

What is the CLSC tool role? The idea of the project is to utilize the Scheduling and 
MES modules to optimize the supply chain by the means of AI algorithms, which 
will support the manufacturing system predicting production drifts and helping to 
identify cause-effects events related to defects. 
Through the SIGIT’s IoT Layer a wide range of data will be collected initially, from 
machinery conditions and parameters (temperature, pressure, humidity, level of 
plastic into the nozzles…) to production information such as pieces manufactured, 
pieces discarded, manufacturing times. Those data will be available not only to the 
Manufacturing Execution System but also to the AI algorithm, which will 
implement a classification algorithm able to predict/detect, on the basis of the run-
time reads of the molding machine data, the production of a defective piece. Such 
algorithm will base on a mathematical model constructed offline, on the basis of 
historical training datasets. 
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The AI algorithms, in case of anomalies predicted analyzing data real-time, will send 
events or warning messages to the Scheduling Module, which will adopt the on-
going production plan introducing for instance maintenance events to the plan. 
Recognizing production drifts or even better anticipating them, will generate a 
positive effect reducing waste and energy consumption. Step by step, through a 
continuous improvement mindset, the production model will become increasingly 
precise and reliable, allowing for a more accurate identification of the cause-effect 
relationships behind the defective parts. 
In the following paragraphs it will be described the process related to the CLSC Tool 
and a dedicated chapter is left to the in-depth explanation of the AI algorithms 
logics. 

5.1. IoT layer and data collection 
An extremely relevant point in this project is the IoT layer and the Open Plast 
interface. Open Plast is an Italian platform developed by Polimatica S.r.l. for Industry 
4.0, proposed as a ready-to-use solution dedicated to the world of plastics and 
rubber, particularly focusing on the injection molding of technopolymers and 
rubber, as well as the extrusion of sheets or technical components. 
The platform collects and standardizes production process data generated by 
machines, which often use different standards and protocols such as EUROMAP 63, 
EUROMAP 77, OPC-UA, MODBUS/RTU, MODBUS/TCP, and SIEMENS S7. The system 
operates on a local server located within the factory and utilizes cloud technology 
for additional data processing and storage. 
The injection molding machineries are capable of providing a vast array of 
parameters, some of them have never been used by SIGIT, therefore the analysis of 
the interface between the CLSC Tool (MES module) will be necessary. For security 
reasons related to the presence of operators into the production floor, only the 
following data shown on Table 3 can be adjusted automatically also by the MES 
directly to the machinery. 
 

Table 3: Editable production parameters 

Type Description 
Active Cavities Cavities currently active 
Blocked Cavities Cavities currently blocked 
Declared Cause Declared cause 

Rejected Parts Defective parts 
Declared Reject Cause Declared reject cause 
Operator On Duty Operator on duty 

Lot Throughput Lot throughput 

Lot Quality Rate Lot quality rate 
Good Parts Yield (Lot) Good parts yield (lot) 
Remaining Lot Time Remaining lot time 
Remaining Lot Quantity Remaining lot quantity 
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Total Cavities Total cavities 
Order Number in Progress Order number in progress 
Article in Progress Article in progress 
Customer Odp in Progress Customer Odp in progress 
Material Code in Progress Material code in progress 
Material Lot Code in Progress Material lot code in progress 
Remaining Lot Processing Time 
Below Threshold 

Remaining lot processing time below defined 
threshold 

Lot Downtime Exceeds 
Threshold 

Lot downtime exceeds defined threshold 

Raw Material Depletion Raw material depletion 
Production Start Approval 
Request (Remaining Setup Time 
Below Threshold) 

Request for production start approval (remaining 
setup time below defined threshold) 

 
 

5.2. Scheduling and execution of production orders 
 
The recycled raw material is introduced into the plant during warehouse 
operations. Upon delivery, an operator records its receipt in the ERP system using 
the bill of lading. Subsequently, this information is integrated into the plant's 
inventory, allowing it to be utilized in production orders according to demand. The 
operator has access to the production plan, while the Scheduling Module manages 
the production floor by specifying which production orders require the specific 
material and when, based on an optimized sequence that typically considers 
molding constraints and parameters.  
The pieces of information listed in Table 4 are generally extracted from the ERP and 
they serve the Scheduling Module as main data. 
 

Table 4: Manufacturing data exchanged with the ERP 

Data Family Data Details Notes Frequency 
Resource 
Master 
Data 

▪ Work center 
▪ Attribute 

classification 

Work centers together with 
information related to shifts 
and company calendars will 
be imported into the CLSC 
Tool. Attributes for work 
centers will not be used at 
the beginning. 

▪ Daily bulk 
▪ On Demand 
▪ Incremental 

mode can be 
enabled 

Operator 
Master 
Data 

▪ Operator ID  Operator master data will 
be extracted to enable 
their association with 
machines in the MES. 

▪ Daily bulk 
▪ On Demand 
▪ Incremental 

mode can be 
enabled 

Material 
Master 
Data 

▪ Unit of 
measure 

▪ Materials 

Material master data for the 
specific material types to be 
managed will be extracted. 
Other surrounding master 

▪ Daily bulk 
▪ On Demand 
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▪ Attribute 
classification 

▪ Revision levels 
▪ Production 

versions 

data, such as units of 
measure, attributes, and 
revision levels, will also be 
extracted. The following 
attributes must be 
extracted: 

• Article color 
• Color range ("weight" 

for each color) 
• Preferred mold 
• Active cavities (used 

only if not explicitly 
managed in the 
cycle) 

 
Molds ▪ Equipment 

master data 
▪ Extraordinary 

maintenance 
orders 

Equipment master data 
is extracted and also 
extraordinary 
maintenance orders 
related to molds 

▪ Daily bulk 
▪ On Demand 
▪ Extraordinary 

maintenance 
orders  

Routings ▪ Routing per 
item 

▪ Attribute 
classification 

Valid routings for all 
finished, semi-finished, and 
assembled products will be 
extracted. The routing 
includes the preferred work 
center with machine and 
operator production times 
and machine and operator 
setup times. The base 
quantity also includes the 
number of active cavities. 
The following attributes 
must be extracted: 

▪ Associated mold (if 
not unique) 

▪ Associated articles 
(additional 
information, 
currently unavailable 

▪ Possible 
alternative 
presses  

▪ Daily differential 
▪ On Demand 
▪ Potential 

weekly or 
monthly 
mass 
reconciliation 

Bill of 
Materials 

▪ Bill of materials 
per item 

Valid BOMs for each 
finished, semi-finished 
molding, and assembled 
product will be extracted. 
Both the committed 
quantity and the base 
quantity, which should 
indicate the cavity 
reference consumption, 
are present.  

▪ Daily differential 
▪ On Demand 
▪ Potential 

weekly or 
monthly 
mass 
reconciliation 
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Planned 
Orders 

▪ Planned 
production 
orders 

Extraction of planned 
production orders with 
quantity and requested 
date determined by the 
MRP 

▪ Daily bulk 
▪ On Demand 

Production 
Orders 

▪ Production 
orders 

 

Extraction of all 
production orders not yet 
closed in the ERP. Each 
production order carries 
its associated BOM and 
routing, with information 
on partially or fully issued 
components, and 
quantities of phases 
already confirmed and 
phases already closed. 

▪ High Frequency 
incremental 

New orders, 
status changes, 
and quantity 
changes must 
be extracted 
with high 
frequency to 
keep the CLSC 
Tool always 
aligned with the 
ERP. 

Sales ▪ Sales orders 
▪ Delivery plan 

Demand data is useful for 
Scheduling to highlight 
which production orders 
were generated for which 
requests and the delivery 
deadlines. It is important 
that the quantity data is 
always net of already 
shipped quantities. 

▪ Daily or 
multi-daily 
bulk 

Purchases ▪ Purchase 
orders 

▪ Delivery plan 

Purchase plans data is 
important to allow the 
scheduler to simulate the 
stock trend of critical 
materials. The quantity 
data must always be net 
of already delivered 
amounts (confirmed 
receipt). 

▪ Daily or 
multi-daily 
bulk 

Stock 
Availability 

▪ Stock Extraction of the 
inventory  

▪ Daily or 
multi-daily 
bulk 

 
 
As written above, the primary input for the Scheduler will be the order proposals 
calculated by the MRP and the already created production orders with their status. 
Based on the parameters and rules set in the system the Scheduler will calculate 
an optimal production sequence for the Molding department.  
In the Scheduler, it will be possible to: 

• Modify the quantities proposed by the MRP 
• Combine multiple proposals into a single order 
• Modify the production start date proposed by the MRP 
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• Change the association to the work center by choosing from the available 
alternatives 

• Assign a different production version from the preferred one set in the ERP 
Once the sequence is confirmed and released, data will be sent back to the ERP, 
which will result in: 

• For order proposals: the conversion into production orders, the recording of 
a scheduled start and end production date, and the association to a work 
center 

• For already converted orders: the definition of the start and end production 
date and the association to a work center 

Based on the sequence set by the Scheduler, the release of production orders will 
be carried out daily in ERP, which includes checking the availability of raw materials 
or semi-finished products in the warehouse and, if positive, assigning the 
corresponding batch in the warehouse. 
Through a user-friendly interface, the operator will be able to see the whole 
production orders and their percentage of completion as shown in Figure 2. 
 

 
Figure 2: Production order analysis 

 
A Gantt representation will be available too, where it will be possible to analyze the 
several production orders scheduled for individual machines Figure 3. 
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The production schedule can be dynamically adjusted through the integration of 
AI algorithms. These algorithms generate events via Microsoft LogicApp 
technology, prompting maintenance orders based on detected anomalies, such as 
deviations in temperature or pressure. The operator is then presented with the 
option to either accept or reject these maintenance recommendations. 
Once the daily production plan has been confirmed, production can become 
executable and therefore, at this point, is better to start talking about MES.  
 
The work centers involved are presses, assembly benches, and other production 
machinery. The system allows associating: 

• One or more operators for each Work Center 
• One or more Work Centers for each operator 

The main phases that will be involved in the MES system are: 

1. Setup phase 
2. Startup phase 
3. Processing phase 
4. Quality control and scrap declaration phase 

The setup phase consists of the preparation and loading of the machine by a 
technician. The startup phase, which follows the setup phase in the case of a new 
order, consists of an initial manufacturing phase of items. They require quality-
control check because in the startup phase defective parts may be produced until 
the machine reaches full operational efficiency. The production phase always 
begins with the declaration of the Start Processing Time by the direct operator, 
following the startup phase. The system will calculate the total number of pieces 
produced for each production order, for each item. This calculation will take into 
account the number of operational cavities and the number of figures in 
production on each Work Center (parallel orders) and the actual production 

Figure 3: Production Gantt 
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recorded in real-time by the MES on the Work Centers. The determination of the 
number of cavities will be recorded in the routings master data. If the number of 
cavities is not in the cycle master data, it is assumed to be equal to 1. 
 
The quality control activity is divided into the following steps: 

• Operator Self-Inspection on the Line: Every X hours, the direct operator 
takes a piece from the production line, inspects it, fills out a checklist (which 
can vary by item), and places it in one container if it is deemed acceptable, 
or in another container if it is deemed scrap. Both containers are located on 
the machine.  

• Quality Control Inspection: Every Y hours, the quality control inspector 
checks the pieces in both containers directly at the machine or in the quality 
office if dimensional checks are required.  

• Scrap Declaration: After the inspection, the QC inspector will declare any 
detected scraps and manually assign them to the appropriate shift using a 
tablet. If the quality inspection is OK, the pieces are reintroduced into 
production. Otherwise, the operator must enter the detected non-
conformity and the reason for the rejection.  

Quality control is particularly relevant to DigInTraCE project, especially the scrap 
declaration phase because the pieces of information collected by the QC operator 
will be crucial for the AI algorithms in order to identify a cause-effect correlation 
and prediction of further rejected pieces. 
 
At the end, the CLSC Tool will return to the ERP the following main information: 

• Direct operators who have worked on the production order 
• Work Center 
• Indirect operators who have worked on the production order 
• Work time per order: 

o Setup time 
o Start-up time  
o Processing time  

• Downtime per order and reasons of the downtime 
• Number of pieces produced per production order 
• Number of scrap pieces per production order together with an explanation 

of scrap reason 

Every production data is stored in the IoT layer and the CLSC Tool systems and can 
be shared with the DPP adopting Microsoft technologies like Data Factory or 
LogicApp, or by the mean of .csv files. 
 
Considering the various interactions among the ERP system, Scheduling, MES, Iot 
Layer and AI algorithms, continuous improvement actions can be implemented to 
progressively reduce waste and thereby enhance efficiency, creating a virtuous 
cycle. 
 



 D5.8 PLASTIC PARTS AND COMPONENTS ANALYSIS AND ORIGIN FOR REUSE OPTIMISATION V1 

 

33 

6. ML algorithms for anomalies detection and 
prevention  

In this section we first define the anomalies detection and prevention problem, 
then we describe the expected inputs and outputs according to the dataset 
descriptions delivered by SIGIT, finally we provide a high-level description of the 
class of Machine Learning (ML) algorithms that are expected to be exploited. 

6.1. Anomalies detection and prevention problem 
The anomalies detection and prevention problems consist of creating, using a 
dataset of training historical data, a mathematical model able to detect or prevent, 
in real time, anomalies of the system using a streaming source of data compatible 
with those used for the training. The algorithm is divided in two phases: (1) training, 
where an historical dataset (not necessarily in run time) is exploited to generate the 
anomaly detection model; (2) validation, where runtime data, with the same 
characteristics of those used for the training phase, will be used to detect 
anomalies using the model generated in the training phase. 
 
We will tackle this problem using an interdisciplinary approach, which 
appropriately exploits algorithms from Machine Learning and from Control Theory: 
such innovative approach is able to leverage the potentialities of supervised 
machine learning for data classification, as well as the mathematical background 
of control theory, specifically related to the Kalman filter well known method, 
capable of processing time series. 

6.2. Expected dataset description 
Hereby are enumerated some examples of expected dataset provided by SIGIT for 
each phase of the molding process. As illustrated in the tables and figures, the data 
extracted from the injection molding machine consist of physical variables 
extracted at specific sampling times for each cycle: as a consequence, for each 
produced piece time trajectories of such variables are available. This makes it 
critical to develop algorithms able to account for the system’s dynamics via control 
theory, as well as machine learning algorithms able to classify nominal vs. defective 
behaviours. It is still to be verified whether it will be possible to associate, to each 
production cycle, a label indicating either “nominal” or “defective” piece. According 
to the availability of this information, the machine learning technique to be used 
substantially changes: In the next section we provide a list of tentative algorithms 
that can be exploited for such classification task in both cases. 
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6.2.1. Filling phase 

The filling phase dataset consists of main injection fill set data, main injection 
switch set data, actual screw position value, actual screw pressure value, as 
illustrated in details in Figure 4 and Table 5: Filling data descriptionTable 5.  

 

Figure 4: Filling data example 

 

Table 5: Filling data description 

Description Property Max Data Type Unit 

Number of fill steps R/W 10 Int16 
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Step 1 fill profile speed R/W 

 

Float mm/s 

Step 2 fill profile speed R/W 

 

Float mm/s 

Step 3 fill profile speed R/W 

 

Float mm/s 

Step 4 fill profile speed R/W 

 

Float mm/s 

Step 5 fill profile speed R/W 

 

Float mm/s 

Step 6 fill profile speed R/W 

 

Float mm/s 

Step 7 fill profile speed R/W 

 

Float mm/s 

Step 8 fill profile speed R/W 

 

Float mm/s 

Step 9 fill profile speed R/W 

 

Float mm/s 

Step 10 fill profile speed R/W 

 

Float mm/s 

Step 1 fill profile pressure R/W 

 

Float bar 

Step 2 fill profile pressure R/W 

 

Float bar 

Step 3 fill profile pressure R/W 

 

Float bar 

Step 4 fill profile pressure R/W 

 

Float bar 

Step 5 fill profile pressure R/W 

 

Float bar 

Step 6 fill profile pressure R/W 

 

Float bar 

Step 7 fill profile pressure R/W 

 

Float bar 

Step 8 fill profile pressure R/W 

 

Float bar 

Step 9 fill profile pressure R/W 

 

Float bar 

Step 10 fill profile pressure R/W 

 

Float bar 

Step 1 fill profile position R/W 

 

Float mm 

Step 2 fill profile position R/W 

 

Float mm 
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Step 3 fill profile position R/W 

 

Float mm 

Step 4 fill profile position R/W 

 

Float mm 

Step 5 fill profile position R/W 

 

Float mm 

Step 6 fill profile position R/W 

 

Float mm 

Step 7 fill profile position R/W 

 

Float mm 

Step 8 fill profile position R/W 

 

Float mm 

Step 9 fill profile position R/W 

 

Float mm 

Switch position R/W 

 

Float mm 

Switch type R/W 

 

Byte 

 

Dosage stroke R/W 

 

Float mm 

Switch time R/W 

 

Int32 ms 

Current screw position R 

 

Float mm 

Instantaneous injection pressure R 

 

Float bar 

 

6.2.2. Holding phase 

The holding phase dataset consists of main injection hold set data, actual screw 
position value, actual time value from start of holding, as illustrated in detail in the 
below Figure 5 and Table 6. 



 D5.8 PLASTIC PARTS AND COMPONENTS ANALYSIS AND ORIGIN FOR REUSE OPTIMISATION V1 

 

37 

 

Figure 5: Holding data example 

 

Table 6: Holding data description 

Description Property Max Data Type Unit 

Number of holding steps R/W 10 Int16 

 

Step 1 hold profile speed R/W 

 

Float mm/s 

Step 2 hold profile speed R/W 

 

Float mm/s 

Step 3 hold profile speed R/W 

 

Float mm/s 
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Step 4 hold profile speed R/W 

 

Float mm/s 

Step 5 hold profile speed R/W 

 

Float mm/s 

Step 6 hold profile speed R/W 

 

Float mm/s 

Step 7 hold profile speed R/W 

 

Float mm/s 

Step 8 hold profile speed R/W 

 

Float mm/s 

Step 9 hold profile speed R/W 

 

Float mm/s 

Step 10 hold profile speed R/W 

 

Float mm/s 

Step 1 hold profile pressure R/W 

 

Float bar 

Step 2 hold profile pressure R/W 

 

Float bar 

Step 3 hold profile pressure R/W 

 

Float bar 

Step 4 hold profile pressure R/W 

 

Float bar 

Step 5 hold profile pressure R/W 

 

Float bar 

Step 6 hold profile pressure R/W 

 

Float bar 

Step 7 hold profile pressure R/W 

 

Float bar 

Step 8 hold profile pressure R/W 

 

Float bar 

Step 9 hold profile pressure R/W 

 

Float bar 

Step 10 hold profile pressure R/W 

 

Float bar 

Step 1 hold profile time R/W 

 

Int32 ms 

Step 2 hold profile time R/W 

 

Int32 ms 

Step 3 hold profile time R/W 

 

Int32 ms 

Step 4 hold profile time R/W 

 

Int32 ms 

Step 5 hold profile time R/W 

 

Int32 ms 
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Step 6 hold profile time R/W 

 

Int32 ms 

Step 7 hold profile time R/W 

 

Int32 ms 

Step 8 hold profile time R/W 

 

Int32 ms 

Step 9 hold profile time R/W 

 

Int32 ms 

Step 10 hold profile time R/W 

 

Int32 ms 

Switch position 

    

Switch type 

    

Dosage stroke 

    

Switch time 

    

Actual time from start of 
holding 

    

 

6.2.3. Injection phase graph 

The injection phase graph dataset consists of time curve (400 values), pressure 
curve (400 values), position curve (400 values), actual position curve (400 values), 
with the sampling frequency determined by the set trace time / 400 samples, as 
illustrated in detail in the below Figure 6 and Table 1. 
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Figure 6: Injection phase graph data example 

 

Table 7: Injection phase graph data description 

Description Property Data Type Unit 

Sampling frequency R Int16 ms 

Trace time R/W Int32 ms 

Acquisition delay R/W Int32 ms 

Number of samples R Int16 

 

Array of times R Float Array[400] ms 

Array of pressures R Float Array[400] bar 

Array of velocities R Float Array[400] mm/s 
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Array of positions R Float Array[400] mm 

 

 
6.2.4. Dosing phase 

The dosing phase dataset consists of main dosing set data, actual screw rotation 
value, actual back pressure value, as illustrated in detail in the below Figure 7 and 
Table 8. 

 

Figure 7: Dosing phase data example 
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Table 8: Dosing phase data description 

Description Property Max Data Type Unit 

Number of dosing steps R/W 5 Int16 

 

Step 1 dosing profile speed R/W 

 

Float rpm 

Step 2 dosing profile speed R/W 

 

Float rpm 

Step 3 dosing profile speed R/W 

 

Float rpm 

Step 4 dosing profile speed R/W 

 

Float rpm 

Step 5 dosing profile speed R/W 

 

Float rpm 

Step 1 dosing profile back 
pressure 

R/W 

 

Float bar 

Step 2 dosing profile back 
pressure 

R/W 

 

Float bar 

Step 3 dosing profile back 
pressure 

R/W 

 

Float bar 

Step 4 dosing profile back 
pressure 

R/W 

 

Float bar 

Step 5 dosing profile back 
pressure 

R/W 

 

Float bar 

Step 1 dosing profile position R/W 

 

Float mm 

Step 2 dosing profile position R/W 

 

Float mm 

Step 3 dosing profile position R/W 

 

Float mm 

Step 4 dosing profile position R/W 

 

Float mm 

Step 5 dosing profile position R/W 

 

Float mm 

Switch position R/W 

 

Float mm 

Switch type R/W 

 

Byte 

 

Dosage stroke R/W 

 

Float mm 
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Switch time R/W 

 

Int32 ms 

Current screw rotation R 

 

Float rpm 

Instantaneous back pressure R 

 

Float bar 

 

6.2.5. Molding phase 

The molding phase dataset consists of data of mold opening position set, actual 
mold position value, actual closing force value, as illustrated in detail in the below 
Figure 8 and Table 9. 

 

Figure 8: Molding phase data example 

 

Table 9: Molding phase data description 
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Description Property Max Data Type Unit of Measure  

Mold opening position R/W 
  

Float mm 

Actual mold position value R 

  

Float mm 

Actual closing force value R 

  

Float ton 

 

6.2.6. Cylinder temperature data 

For each individual zone, for 2 injection groups, the protocol provides the data 
illustrated in detail in the below Figure 9 and Table 10. 
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Figure 9: Cylinder temperature data example 

 

 

 

 

 

 

 

Table 10: Cylinder temperature data description 

 

 

6.2.7. Temperature of the mold data 

For each individual zone, the protocol provides the data illustrated in detail in the 
below Figure 10: Temperature of the mold data exampleFigure 10 and Table 
11. 
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Figure 10: Temperature of the mold data example 

 

Table 11: Temperature of the mold data description 
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6.2.8. SPC 
Statistical Process Control helps the user monitor and control the manufacturing 
process to ensure consistent product quality. The Figure 11 shows the data available 
from the press. 

 

Figure 11: Statistical Process Control parameters 

 
Considering that the page on the press remains the same, a leaf will be created for 
each parameter selectable from the list (not just those set on the page). The 
properties of the 18 parameters can be set. For each of the 18 set parameters, the 
following properties can be configured: Selected parameter, Deviation, Minimum 
limit, Maximum limit. At the end of each cycle, the generation of the 
CycleParametersEvent is planned, which contains the values acquired during the 
cycle related to injection and the mould. Additional parameters not covered by 
Euromap 77 will need to be added. Information sent at the end of each automatic 
cycle performed by the press will be those listed in Table 12. 

 

Table 12: SPC data 

Parameter Description 

Injection 

 

xx Injection number 

yy Barrel temperature zone number 

InjectionUnitCycleParametersd_xx/BarrelTe
mperatureZone_yy/ActualTemperature 

Actual temperature of the individual 
zone 

InjectionUnitCycleParametersd_xx/BarrelTe
mperatureZone_yy/Index 

Index of the individual zone 

    

    

    

    

    

    

    

    

    

  

  

  



 D5.8 PLASTIC PARTS AND COMPONENTS ANALYSIS AND ORIGIN FOR REUSE OPTIMISATION V1 

 

48 

InjectionUnitCycleParametersd_xx/BarrelTe
mperatureZone_yy/Name 

Name of the individual zone 

InjectionUnitCycleParametersd_xx/Cushion
Volume 

Volume of material remaining in the 
barrel after injection and holding 

InjectionUnitCycleParametersd_xx/DosingT
ime 

Time taken to prepare material for the 
next injection 

InjectionUnitCycleParametersd_xx/Index Injection number 

InjectionUnitCycleParametersd_xx/Injectio
nTime 

Time required to fill the mould cavity 

InjectionUnitCycleParametersd_xx/Plastific
ationVolume 

Volume of material for the next 
injection 

InjectionUnitCycleParametersd_xx/Specific
PressureMaximum 

Maximum specific pressure on the 
material during injection 

Mould 

 

yy Mould temperature zone number 

MouldParameters_01/BarrelTemperatureZo
ne_yy/ActualTemperature 

Actual temperature of the individual 
zone 

MouldParameters_01/BarrelTemperatureZo
ne_yy/Index 

Index of the individual zone 

MouldParameters_01/BarrelTemperatureZo
ne_yy/Name 

Name of the individual zone 

MouldParameters_01/Index Mould number (1) 

 
Specific production machines for testing purposes had been chosen, particularly 
focusing on injection molding machines and they are shown in Figure 12. 
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Figure 12: SPC Work centers and allowed sampling frequencies 

6.3. Machine Learning algorithms 
We now provide a general overview of several supervised learning methods to 
predict the outcome based on a given input in different scenarios. In case there will 
be no availability of a label “nominal” or “defective” associated to each produced 
piece, in addition to such supervised learning methods there will be need to exploit 
“fault detection” algorithms from control theory, such as the well-known Kalman 
filter. 
The inputs are called independent variables or features, whereas the outputs are 
called dependent variables, response variables or targets. In simple words, for a 
known output, the known inputs are taken to fit an unknown function, so we are 
trying to approximate a function using this learning method. Mathematically, Input 
variables à Function (Input variables) à Output. Now, let us look at different 
supervised learning techniques below. 
 
K-Nearest Neighbor (KNN): The basic working principle relies on similar data 
points showing identical behaviour. Since this algorithm works locally, it effectively 
identifies patterns in varying datasets. 'K' is a parameter that represents the 
number of nearest neighbours considered when making predictions. Therefore, 
the selection of 'K' influences the algorithm's performance by balancing bias and 
variance. 'K' is also called a hyperparameter, along with a distance metric 
(Euclidean distance, Manhattan distance, Minkowski distance), which is another 
hyperparameter. It specifies various methods for calculating the distance between 
the data points. KNN differs from other learning methods in its simplicity and lack 
of explicit training phases. It uses a copy of the training data to make predictions, 
sometimes called a lazy algorithm. It is simple and easy to implement as it is non-
parametric, assumes no specific data distribution, and possesses a minimal training 
phase. For large datasets, it is computationally expensive and sensitive to irrelevant 
features, and optimal 'K' selection can impact performance. 
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Support Vector Machine (SVM): This algorithm can identify optimal hyperplanes 
that effectively separate the data points in the feature space. It maximizes the 
margin between different classes and approximates the regression function in 
regression. 'C' is a regularization hyperparameter that balances the trade-offs 
between a smooth decision boundary with a higher value of 'C 'and an accurate 
classification of training points with a low 'C'. The kernel trick enables SVM to 
identify non-linear decision boundaries by implicitly mapping data into higher-
dimensional spaces. Epsilon determines the accepted error for the regression 
model, affecting support vectors' margin width. SVMs optimize the margin, which 
sets them apart from other learning techniques. So, they are effective in scenarios 
where clear class separation is needed. SVM is effective in high-dimensional spaces 
and versatile using the kernel trick; therefore, it is robust and can be overfitted 
using optimal regularization. SVM is sensitive to noisy data and computationally 
costly for a large dataset. It is also highly dependent on the hyperparameters. 
 
Decision Trees: Recursive partitioning is the working principle behind decision 
trees, where the dataset is split into subsets based on feature conditions. Each 
partition represents a decision node, and the loop continues until a stopping 
criterion is met. The nodes represent decision points, and the leaves provide the 
final predictions. The conditional nodes guide the partition process. Maximum 
depth limits the number of decision nodes in a tree, whereas a deeper tree captures 
complex relations but is prone to overfitting. The minimum sample split specifies 
the minimum number of samples required to split an internal node where a higher 
value keeps check on creating small and noisy splits. The minimum sample leaf 
specifies the number of samples required to make a leaf node, affecting the final 
predictions' coarseness. The criterion specifies the function used to measure the 
quality of a split, which can be "gini" or "squared error" based on the type of 
problem. Compared to other ensemble methods, like random forest and gradient-
boosted trees, which are stand-alone methods, the decision tree is prone to 
overfitting because it constrains tree growth. It also is not practical to predict by 
generalizing on unseen data. It is simple to understand and visualize, captures non-
linear relationships well, and requires minor data for training. For complex 
relationships, the decision tree needs more expressiveness. 
 
Random Forest: As the name suggests, the random forest builds a predictive 
model by making multiple decision trees. From feature selection to data sampling, 
the process is truly random, helping mitigate the effects of overfitting. The decision 
trees created are independent, and their predictions are averaged by voting or 
averaging. The number of trees equals the number of decision trees in the forest; 
more trees increase performance, but after optimal is reached, it leads to 
diminishing returns. Maximum tree depth is the depth for each decision tree, and 
deeper trees capture more complex relationships but come with overfitting. 
Feature subset size defines the number of selected features for each split in a 
decision tree. This randomness increases the diversity among the trees. A 
minimum sample split is used to split an internal node, but a higher value prevents 
the creation of small and noisy nodes. Criterion is used to measure the quality of 
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the split, the same as the decision tree. Random forest combines multiple weak 
learners to create a robust model, mitigating the risk of overfitting and thus 
improving accuracy. The weak learners contribute equal weight to the final 
predictions. Random forest is effective in handling large datasets. However, it needs 
more interpretability in complex models and is resource-intensive for large 
datasets. It is also sensitive to noisy data. 
 
Gradient Boosted Trees (GBT): GBT is a sequential method. It creates a prediction 
algorithm by adding the decision trees sequentially and correcting the errors of the 
previous ones. Intrinsically, the algorithm minimizes a loss function by optimizing 
the model fit to the training data. These boosting iterations define the number of 
trees added to the ensembles, and the learning rate controls the contribution of 
each tree. Therefore, balancing these parameters is crucial for getting a well-
optimized model. A lower learning rate requires more trees to perform similarly but 
might enhance generalization. Increasing the number of trees improves the 
performance; the depth of trees captures more complex relationships but may lead 
to overfitting. A sub-sample uses a fraction of the training data to fit each tree, 
whereas a lower sub-sample value introduces randomness and can prevent 
overfitting. The loss function defines the error measurement that needs 
minimization during training, such as mean squares or deviations. GBT focuses on 
correcting errors in the existing ensembles; it provides high productive accuracy 
and handles non-linear relationships. At the same time, it is sensitive to noisy data, 
requires explicit tuning of the hyperparameters, and requires much longer training 
time due to its sequential approach. 
 
Multi-layer Perceptron (MLP): In MLP, which tries to mimic the human brain, input 
data is passed through layers of interconnected nodes, and an activation function 
is applied to introduce non-linearity. Then, the nodes learn from the data by 
adjusting the weights and biases through backpropagation, optimizing the 
model's performance. Input layers receive the input features, hidden layers are 
responsible for learning complex patterns, and the output layer produces the 
model's final output. The learning rate determines the step size while updating the 
weights. A lower learning rate promotes stability, but the convergence will be 
slower. On the other hand, larger values lead to oscillations and overshooting. The 
choice of hidden layers impacts the network's learning capacity, but more 
profound architecture captures complex relationships but increases the risk of 
overfitting. The number of nodes per layer affects the model's expressive behaviour; 
more nodes allow the network to learn more complex features. Activation functions 
like "ReLU", "sigmoid", or "tanh" introduce non-linearities in the hidden layers. Batch 
size defines the number of data points used in each training iteration, where a 
significant batch speeds up the training but needs more memory. Epochs refer to 
the number of times the entire dataset is passed through the network; if it is less, it 
may lead to underfitting. MLP can learn complex non-linear relationships, is 
versatile and applicable to various tasks, and can automatically learn valuable 
features from the raw data. However, it is prone to overfitting with large 
architectures, needs extrinsic tuning of the hyperparameters, and the training is 
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usually computationally intensive, especially for large datasets and complex 
architectures. 
 
Naïve Bayes: Naïve Bayes is a probabilistic classifier that applies Bayes' theorem 
with the assumption of independence between every pair of features. Despite its 
simplicity and the strong independence assumption, it performs well in various 
real-world situations, especially for text classification tasks. The algorithm 
computes the posterior probability of a class given the input features and predicts 
the class with the highest posterior probability. This calculation involves prior 
probabilities of the classes and the likelihood of the features given the class, 
assuming feature independence. There are different types of Naïve Bayes classifiers 
based on the data distribution: 

• Gaussian Naïve Bayes assumes that the features follow a normal distribution. 

• Multinomial Naïve Bayes is suitable for discrete data and is commonly used 
for text classification. 

• Bernoulli Naïve Bayes is useful when binary or boolean features are present. 

Naïve Bayes is computationally efficient, requires a small amount of training data, 
and can handle high-dimensional data well. However, it assumes that all features 
are equally important and independent, which is rarely true in practice. Despite 
this, it often performs surprisingly well and can serve as a strong baseline for text 
classification tasks and other applications. 
 
Generalized Linear Model (GLM): Generalized Linear Models (GLM) extend linear 
models to accommodate non-normal distributions of the response variable by 
linking the mean of the response variable to a linear predictor through a link 
function. The three main components of GLMs are: 

• Random Component: Specifies the probability distribution of the response 
variable (e.g., normal, binomial, Poisson). 

• Systematic Component: Represents the linear predictor, a linear 
combination of the input features. 

• Link Function: Connects the expected value of the response variable to the 
linear predictor. Standard link functions include the identity link (for linear 
regression), logit link (for logistic regression), and log link (for Poisson 
regression). 

GLMs are flexible and can model various data distributions, providing a broad 
framework for many statistical models. They are widely used in fields like 
economics, biology, and epidemiology. However, GLMs require careful selection of 
the link function and the distribution of the response variable. Mis-specification can 
lead to poor model performance. 
 
Logistic Regression: Logistic regression is a type of GLM used for binary 
classification problems. It models the probability of the target variable belonging 
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to a class by fitting a logistic function (sigmoid) to the linear predictor. Key 
hyperparameters and considerations include: 

• Regularization Parameters: L1 and L2 regularization (controlled by the 
parameter C in many implementations) helps prevent overfitting by 
penalizing significant coefficients. 

• Solver: Different solvers like "liblinear", "saga", and "lbfgs" can be used for 
optimization, each with trade-offs in terms of speed and convergence. 

Logistic regression is interpretable, easy to implement, and performs well on 
linearly separable data. It can also extend to multiclass classification problems (one-
vs-rest or multinomial logistic regression). However, it may need help with non-
linear relationships and requires careful feature engineering to perform well on 
complex datasets. 
 
Fast Large Margin: Fast large margin (FLM) classifiers, also known as large margin 
nearest neighbour (LMNN) algorithms, optimize classification by maximizing the 
margin between classes while incorporating the speed and simplicity of instance-
based learning methods. The main idea is to learn a distance metric that minimizes 
the distance between similar instances and maximizes the margin between 
different classes. This is achieved through a combination of: 

• K-nearest neighbours: Ensuring similar instances are close together. 

• Large margin principles: Ensuring different classes are well-separated. 

FLM algorithms often involve learning a Mahalanobis distance metric, which 
adapts the feature space to improve classification accuracy. This is typically 
formulated as a convex optimization problem. FLM's advantages include its ability 
to handle high-dimensional data and maintain fast prediction times due to its 
reliance on instance-based learning. However, it can be computationally intensive 
during the training phase, especially for large datasets, due to the need to solve an 
optimization problem. Additionally, selecting the appropriate number of 
neighbours and regularization parameters is crucial for optimal performance. 

 

7. Overall integration to implement the reuse 
optimization process 

This chapter aims to describe the steps that the waste will do in order to increase 
its reusability and therefore its sustainability. Moreover, it serves to clarify what has 
been explained in the previous paragraphs, it provides insights concerning the 
physical and informational flows, and how the various technologies interact. 
 
The field chosen for the project is that of WEEE, for which the upstream supply 
chain is constituted by local collection at ecocenters. The ecocenters collect end-
of-life equipment throughout Italy at the municipal level. Any EOL product that 
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arrives at an ecocenter becomes waste, regulated by many restrictive laws aimed 
at preventing improper use or reuse. Only companies with the proper authorization 
can manage it. Collecting is not a scope of the Italian demo for DigInTraCE. For 
more information the reader can refer to Italian D.Lgs 152/2006, D.M. 13/05/2009, 
D.M. 08/04/2008 and related norms and laws. 
According to Italian regulation i the WEEE Coordination Center – CDCRAEEii - is a 
private consortium imposed by the government authority that leads and optimizes 
the collection and management of WEEE. It works under the EU directive 
2012/12/EU. 
In Italy, the WEEE Coordination Centre is the reference point for all those involved 
in the supply chain of waste from electrical and electronic equipment (WEEE). The 
WEEE Coordination Centre is responsible for optimizing the management of WEEE 
in Italy, in fact it directs the collection of electronic waste by Italian municipalities 
to achieve European collection targets to protection and improvement of the 
quality of the environment and human health. Disposal takes place through 
Collective Systems, consortia that deal with the collection, transport, treatment and 
recovery of WEEE, in compliance with the indications of the law and the rules 
established by the WEEE Coordination Center. 
The Collective Systems manages the transport of waste to a certified and 
authorized treatment plant. 
For the Italian Demo Case, the treatment and selection process considered is 
currently carried out by a partner of SIGIT (sources of the materials for the demo), 
with the same will be carried out full-scale final tests including sensing and sorting 
advanced technique performed by IRIS and ICCS. 
The raw materials recycled are transformed into Second Raw Materials inside the 
same facility and SIGIT is allowed by Italian authorization for this process. 
The materials output from the selection and detection process will be tested later 
by Sigit in its production processes. 
The scope of the recycling process, as described, is the production of Secondary 
Raw Materials – SRMs - based on pure polymer and/or polymeric compounds, 
formulated from high percentages of materials recovered from WEEE. The 
improvement in terms of kind of polymeric compounds processed and the 
efficiency of the process are part of scope of the study. 
 
The material flow diagram shown in Figure 13 describes the project in-scope steps 
that the material will do among the different actors. 
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Figure 13: Material flow 

 

As a first step, X tons of WEEE undergoes preliminary treatment at specific facilities 
in compliance with Italian law, before being sent to SIGIT Spa. After performing 
checks and filtering, SIGIT Spa will send heavy plastic flakes to IRIS and ICCS for 
their further sensing and sorting analysis. It is anticipated that the detection 
process will not achieve 100% efficiency due to the challenging separation of certain 
flakes resulting from their composition. Consequently, while X tons of material is 
sent, only Y tons can be considered reusable and suitable for reintroduction into 
production. The remaining Z tons of material will be sent to SIGIT Spa in order to 
have a closed loop traceability and ownership of waste. 
 
Upon receipt and reintegration of the reusable material into production, its 
presence and inventory are managed by the ERP and CLSC Tool. Based on the 
finished products to be manufactured, the material is called from their bill of 
materials and subsequently delivered to the presses where a specific production 
order is scheduled. Throughout the production process, real-time data collection 
managed by the MES, supplemented by the IoT layer, enables AI algorithms to 
predict anomalies and production drifts. When such events occur, the algorithms 
trigger an event to the Scheduler module, which can either generate a 
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maintenance order for a particular press or send warnings to devices on the line, 
thereby supporting the operator. Additionally, to ensure traceability, production 
data can be dynamically transmitted to the DPP.  
In the diagram represented in Figure 15, all the mentioned elements can be seen 
working together. 
 
 
Inserire architettura CLSC Tool integrato ad ERP-algoritmi e DPP  

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The DPP becomes a unique “object” where relevant data related to the entire 
supply chain can be stored and queried, guaranteeing complete traceability. The 
in-depth technical details are provided in D2.1 and D2.4. 
 
Unfortunately, due to the unforeseen SIGIT’s termination, the completion of the 
task to which this deliverable refers has been postponed, obliging the DigInTraCE 
Consortium to reorganize and implement the mitigation actions planned for this 
risk. 
 

7.1. Mitigation action and next steps 
 
The Consortium promptly united to find a replacement for SIGIT, so that the 
planned activities could be managed in the best possible way. The most 
challenging aspect is finding a new partner interested in producing finished 
products to sell to their final customers in recycled material. Nonetheless, SIGIT is 
in the automotive sector, which, although highly regulated, is not as strictly 
regulated as the food sector, for example, where the constraints are even more 
stringent.  
Once a new partner is approved, the project team will conduct a gap analysis of the 
differences between the two scenarios. By changing the finished product to be 

Figure 14: The integrated solution diagram 

ERP 
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produced, it is very likely that the material in focus will also change, and the process 
for optimizing its reuse will need to be studied. 
Nevertheless, with the approval of a new partner and through thorough 
discrepancy analysis, the project team is poised to adapt and optimize the reuse 
process effectively, ensuring continued progress and success in achieving the 
DigInTraCe objectives.  
 
Despite SIGIT's exit, the activities conducted thus far have enabled partners to 
perform initial analyses on plastic materials and test their technological tools, 
which will also be applied in the new future scenario. 
The departure of SIGIT has necessitated a reevaluation of project dynamics, 
particularly in the context of plastic material analysis and technological tool testing. 
Prior to SIGIT's exit, significant groundwork had been laid, allowing partners to 
initiate crucial assessments and trials. These activities have served as foundational 
steps in understanding material characteristics, exploring processing capabilities, 
and refining methodologies tailored to project objectives. 
Partners have leveraged this early phase to validate and optimize their 
technological frameworks designed for plastic material analysis.  
 
Moving forward, the project is poised to transition seamlessly despite the setback 
posed by SIGIT's departure. The momentum gained from early analyses and tool 
testing positions partners to pivot effectively towards new collaborative 
arrangements. The resilience demonstrated in adapting workflows and 
recalibrating strategies underscores the consortium's commitment to project 
continuity and success. 
 
Furthermore, the experience gained from initial analyses provides a robust 
foundation for comparison and benchmarking in the revised project landscape. As 
partners explore opportunities to onboard a new collaborator, they are equipped 
with insights and data-driven approaches honed through rigorous testing and 
validation. This proactive approach ensures that future endeavors in plastic 
material analysis and technological advancement remain aligned with project 
objectives and stakeholder expectations. 
 
While SIGIT's exit introduced challenges, it also catalyzed a phase of introspection 
and adaptation within the consortium. The collaborative efforts undertaken thus 
far have not only fortified technical capabilities but also reinforced the consortium's 
resilience in navigating unforeseen circumstances. By leveraging early successes 
in material analysis and technological tool development, partners are primed to 
forge ahead with confidence, ensuring continuous advancement and innovation in 
the project's pursuit of sustainable solutions. 
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8. Conclusions 

The study on the reuse optimization of plastic parts and components reveals 
several key findings and provides actionable recommendations to enhance reuse 
processes. This comprehensive analysis underscores the significance of various 
types of plastics, their properties, and their potential for reuse, highlighting the 
crucial role of closed-loop supply chains (CLSC).  
Moreover, the implementation of modern sorting technologies significantly 
improves the identification and separation of different plastic types, ensuring 
higher purity and quality of recycled materials. The study emphasizes the need to 
optimize the quality and consistency of SRMs to meet industry standards, 
enhancing their application in new products and supporting sustainable 
manufacturing practices. Implementing rigorous quality control measures and 
adhering to customer-specific requirements (CSR) is crucial to ensure the reliability 
and performance of reused components. 
The use of the Closed Loop Supply Chain Tool (CLSC Tool) and the Digital Product 
Passport (DPP) streamlines processes, tracks material flows, and improves 
transparency and traceability throughout the lifecycle of plastic parts. Promoting 
the reuse of plastic components supports environmental sustainability by reducing 
waste and conserving resources. It also offers economic advantages by lowering 
material costs and creating new business opportunities in recycling and 
manufacturing sectors.  
Therefore, a comprehensive approach that combines technological advancements, 
stringent quality control, and industry collaboration is essential to optimize the 
reuse of plastic parts and components. By adopting these strategies, industries can 
contribute to a more sustainable and circular economy, aligning with global efforts 
to reduce plastic waste and promote resource efficiency. 
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Disclaimer of Warranties 

The information and views set out in this deliverable are those of the authors and 
do not necessarily reflect the official opinion of the European Union. Neither the 
European Union institutions and bodies nor any person acting on their behalf 
may be held responsible for the use which may be made of the following 
information. 
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